
ICSOFT-EA 2015

An Approach for the Semi-automated Derivation
of UML Interaction Models from Scenario-based

Runtime Tests

by Thorsten Haendler, Stefan Sobernig, and Mark Strembeck

Institute for Information Systems and New Media

Vienna University of Economics and Business (WU), Austria

thorsten.haendler@wu.ac.at

mailto:thorsten.haendler@wu.ac.at

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 2

Outline

 Derivation of behavior
documentation (in terms of UML
interaction models) from runtime
tests

 Runtime tests reflect exemplary
and intended behavior of the
system under test (SUT).

 Characteristic structure of
scenario-based tests provides an
option space for configuring views:

 resulting in partial models →
human-tailored for a specific task.

Kaleido
Scope

 System
under Test

UML Sequence
 Diagrams

Scenario-Test
Specification

UML Interaction
 Models

Stakeholder

selects
test-based views

Fig. 1. Deriving tailored models from scenario-based
runtime tests.

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 3

Structure of the Talk

 Motivation
 Conceptual Overview
 Example

 System under test (SUT)
 Scenario-test specification
 Test-execution trace model
 Mappings between test and UML
 Tailored sequence diagrams

 Option space for tailoring models (scenario-test viewpoint)
 Prototype implementation KaleidoScope
 Future Work
 Summary

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 4

Motivation 1/2

 Behavior documentation, esp. by using graphical models,
facilitates communication about and understanding of software
systems.

 Manual creation (and maintainance) is an error-prone and
time-consuming task (Rost et al., 2013).

 Multiple approaches exist for reverse-engineering behavioral
models automatically from system execution (e.g., UML
sequence diagrams: Briand et al., 2003).

 → Problem of model-size explosion (e.g., Sharp and
Rountev, 2005; Bennett et al., 2008)

 Common counter measures are, e.g., techniques of sampling
and hiding of model elements (e.g., Hamou-Lhadj and
Lethbridge, 2004; Bennett et al., 2008).

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 5

Motivation 2/2

In this approach:
 We leverage the characteristics of scenario-based runtime tests

for deriving tailored interaction models (scenario-test
viewpoint)

 → we provide configuration options for the system's
stakeholders to fit the models to maintenance tasks (tailoring)

 → test-to-system traceability (behavioral slices)
 scenarios (e.g., Jacobson, 1992): structured stories describing

sequences of actions and events
 scenario-based testing (e.g., Ryser and Glinz, 1999):

automated execution and verification of scenarios that describe
interactions with or within a software system

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 6

Conceptual Overview

develops
uses

Tester
Developer

Stakeholder

selects test-based view

System
under Test

Test
Framework

Scenario-Test
Specification

Trace
Provider

Interaction
Model

Sequence
Diagram

setup

sd run2

precond.

postcond.

testbody

cleanup

Test Run

Model
Builder

Scenario-Test
Trace Model

Diagram
Editor

Test
Log

tests

creates

uses

uses

analyses

analyses returns

1

starts

2

3

4

5

67

8

specifies

Model-to-Model
Transformation

1

Fig. 2. Process of deriving tailored UML interaction models from
scenario-based runtime tests.

Model-driven approach

transformation based on
mappings between the
metamodels of scenario-
based testing and UML2

Semi-automated
derivation

manual selection of
views conforming to a
scenario-test viewpoint

Our prototype implementation KaleidoScope can derive
tailored interaction models from scenario-based runtime tests.

A B

C

DE

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 7

Example 1/5
A) System under Test (SUT)

Fig. 3. Exemplary object-oriented system under test (SUT).

Stack
-limit: Integer [1]
-element: Double [*]

+push(e:Double): Boolean
+pop(): Double
+size(): Integer
+full(): Boolean
-getElements(): Double[]
+getLimit(): Integer
+setLimit(l:Integer)

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 8

Example 2/5
B) Scenario-Test Specification

Scenario-Test
Specification

Fig. 4a. Excerpt from test specification.

Fig. 4b. Natural-language description.

Exemplary test scenario pushOnFullStack

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 9

Example 3/5
C) Test-Execution Trace Model

Fig. 5a. Excerpts from the corresponding test-execution trace model (XMI).

1

1..* 1..*

*

+definition
1

1
1

TestSuite TestCase TestScenario

TestPart TestResult ExpectedResult

Setup Precondition TestBody Postcondition Cleanup

Block AssertionExpression FeatureCallDefinition

+target
1

*+callee1 * *

+source
1

1
1

*+caller1

Class

Feature FeatureCall

Instance

ReturnValueArgument

Trace

0..1

0..1

checkedAgainst

{ordered}

{ordered}

/owning
Block

/owned
Calls

0..1

*
1..*

0..1

0..1 0..1 0..1 0..1

+body
1..*

1..*

Operation Property

Constructor Destructor

+owningClass
1

*
+owned
Feature

0..1

+definingClass

1

{ord.}

0..11..*

Scenario-Test Framework

Scenario-Test Traces

Block
Structure

Fig. 5b. Test-execution trace
meta-model.

instance of

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 10

Example 4/5
D) Mappings between Test and UML

 transML diagram
(Guerra et al., 2012)
technology- &
language-independent
and UML compatible

 in total, 18 mappings
(12 for traces, 6
viewpoint mappings)

 mappings refined by
OCL constraints

1

OCL
instance=fC.source or
instance=fC.target

Scenario-Test
 Metamodel

UML2 Metamodel Test2UML

Argument

FeatureCall

Feature

Instance

Class

Value

Message

MessageOccurrence

ConnectableElement

Lifeline

Class

+argument

+receiveEv.
1

+event*

+cov.1

+repr.
1

+type
1

+callee
1

+target
1

1

1 1

1

* *

+owningClass

1

*

+owned
Feature

NamedElement

Execution

MessageSort

+start

sendEv.

receiveEv.

synchCall

deleteM.

createM.

+source

1

*

*
*

*

+caller
1

+sendEv.
1

1

+signature

1

Trace Interaction

*

fragment
*

*

*

*

+fragment
*

Constructor

Destructor

*

+covered
1

M1

M2

M4

M5

M6

M7

M8

A definition of source or target
instance is mapped to a class

 A source or target instance is
mapped to a connectable element
 represented by a lifeline

A feature call (fC) is mapped
 to a message

A calling feature is mapped to
 a message occurrence as
 send event

A called feature is mapped to
 a message occurrence as
 receive event

 A called feature that
 is neither constructor nor destructor
 is mapped to execution,
 signature and message sort

A called constructor is mapped
to signature and message sort

M9

M10

A called destructor is mapped
to signature and message sort

A trace is mapped to an
 interaction

M3
An argument is mapped to a value

1

OCL
class=fC.source.definition or
class=fC.target.definition

OCL
argument=fC.argument

OCL
feature=fC.caller

OCL
feature=fC.callee and not
(feature. oclIsTypeOf (Constructor)
or feature. oclIsTypeOf (Destructor))

OCL
constructor=fC.callee

OCL
feature=fC.callee

OCL
destructor=fC.callee

+defining
Class

*

1

OCL
instance=fC.source or
instance=fC.target

Scenario-Test
 Metamodel

UML2 Metamodel Test2UML

Argument

FeatureCall

Feature

Instance

Class

Value

Message

MessageOccurrence

ConnectableElement

Lifeline

Class

+argument

+receiveEv.
1

+event*

+cov.1

+repr.
1

+type
1

+callee
1

+target
1

1

1 1

1

* *

+owningClass

1

*

+owned
Feature

NamedElement

Execution

MessageSort

+start

sendEv.

receiveEv.

synchCall

deleteM.

createM.

+source

1

*

*
*

*

+caller
1

+sendEv.
1

1

+signature

1

Trace Interaction

*

fragment
*

*

*

*

+fragment
*

Constructor

Destructor

*

+covered
1

M1

M2

M4

M5

M6

M7

M8

A definition of source or target
instance is mapped to a class

 A source or target instance is
mapped to a connectable element
 represented by a lifeline

A feature call (fC) is mapped
 to a message

A calling feature is mapped to
 a message occurrence as
 send event

A called feature is mapped to
 a message occurrence as
 receive event

 A called feature that
 is neither constructor nor destructor
 is mapped to execution,
 signature and message sort

A called constructor is mapped
to signature and message sort

M9

M10

A called destructor is mapped
to signature and message sort

A trace is mapped to an
 interaction

M3
An argument is mapped to a value

1

OCL
class=fC.source.definition or
class=fC.target.definition

OCL
argument=fC.argument

OCL
feature=fC.caller

OCL
feature=fC.callee and not
(feature. oclIsTypeOf (Constructor)
or feature. oclIsTypeOf (Destructor))

OCL
constructor=fC.callee

OCL
feature=fC.callee

OCL
destructor=fC.callee

+defining
Class

*

Fig. 6. Excerpt from transML mappings with excerpt from
OCL consistency-constraints based on mapping M4.

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 11

Example 5/5
E) Resulting Tailored UML Sequence
Diagrams

push(1.4)

false

full()

getLimit()

2
size()

true

:Stack

getElements()

[3.5, 4.3]

2

test body
sd pushOnFullStack

:TestDriver

:Stack

sd pushOnFullStack

size()

getLimit()

size()

2

2

2

setLimit(2)

test

:TestDriver

setup

scenario

preconditions

push(1.4)
false

postcond.

test body

1

2

• calls running
 from STF to SUT

• calls running
 from STF to SUT
 and
 SUT internal calls

• test scenario
 pushOnFullStack

• test body of
 test scenario
 pushOnFullStack

test engineer /
test review

system developer /
after code modification

Fig. 7. Exemplary stakeholders/tasks
and derived diagrams.

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 12

Scenario-Test Viewpoint
- Structure of Scenario-based Tests

 Characteristics of scenario-based testing:
 Scenario-test parts (test suite, test case, test

scenario, as well as assertion and exercise blocks)
 Feature-call scopes (calls running from STF to SUT,

calls internal to the SUT, and calls internal to the STF)
 A view stipulates elements to be selected or not

 → resulting in partial interaction models human-tailorable
for a specific task.

 All views conform to a viewpoint (see, e.g., Clements et
al., 2011).

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 13

Option Space for configuring views

t. suite sp. test case

se
tu

p

cl
e
a
n
u
p

se
tu

p

p
re

co
n
d
.

p
o
st

co
n
d
.

cl
e
a
n
u
p

stackTest pushElement

sp. test scenario

te
st

 b
o
d
y

se
tu

p

p
re

co
n
d
.

p
o
st

co
n
d
.

cl
e
a
n
u
p

pushOnFullStack

STF to SUT

SUT intern.

STF intern.

test
parts

call
scopes

✓ ✓ ✓ ✓
✓

1

2

contains
one or many

contains
one or many

multiple
test runs

Fig. 8. Option space for configuring different views conforming to a scenario-test viewpoint.

For the resulting derived
diagrams corresponding to
the configurations 1 and 2,
see slide 11.

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 14

KaleidoScope 1/3
- Derivation Process

Interaction model

System

Sequence diagram

Select view

Scenario-test

Scenario-test
specificationSystem

Test log Runtime

Sequence diagram

Software
Engineer

KaleidoScope

Run test

 Render diagram

Write system and
 scenario tests

 Build
interaction model

Analyse diagram

[more
diagrams]

[finish]

 Build
 trace model

STORM Trace Provider Model Builder
Visual Diagram

Editor

data

Runtime
data

Trace
model

Interaction

specification

View model
Trace
model

model

View model

Instrumenting the
test framework and
extracting execution-
trace data

Transforming view
and trace models to
interaction models

Fig. 9. Process of deriving tailorable UML-based software-behavior
documentation with KaleidoScope.

Available for download from our website http://nm.wu.ac.at/nm/haendler

http://nm.wu.ac.at/nm/haendler

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 15

KaleidoScope 2/3
- Used Technologies A

 Test Framework: Scenario-based Testing of Object-
Oriented Runtime-Models (STORM) (Strembeck, 2011)

 Instrumentation: NX/Tcl (object-oriented extension of
Tcl) provides introspection techniques (see Neumann and
Sobernig, 2015):

 → message interceptors (Mixin and Filter)

 → extraction of trace data by using

callstack introspection (e.g., nx::current) and
structural introspection (e.g., info method)

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 16

KaleidoScope 3/3
- Used Technologies B

 Trace and view models are transformed to UML interaction
models by using Query View Transformation operational
(QVTo) mappings (in total 24 mapping actions).

 → All models are stored and processed in their Ecore/XMI
representation, which makes it possible to import the
models via XMI-compliant diagram editors (e.g., Eclipse
Papyrus).

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 17

Future Work

 Derivation of other model types
 structure models (e.g., UML class models)
 component-based architecture documentation (e.g.,

inter-component interactions)
 Extension of prototype

 integration of other filtering/abstraction techniques
(e.g., constructor hiding, identification of loops)

 instrumenting other testing frameworks (e.g., JBehave
using AspectJ)

 Application in large-scale projects
 usability for stakeholders/tasks

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 18

Summary

 Model-driven and semi-automated derivation of behavior
documentation (in terms of UML2 interaction models)

 Scenario-test viewpoint (different views on the test-
execution trace available for configuration)

 Prototype implementation KaleidoScope (proof of concept)

Thorsten Haendler, Session 3, ICSOFT-EA 2015Slide 19

Thank you for your attention!

Q&A

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19

