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Outline

 Derivation of behavior 
documentation (in terms of UML 
interaction models) from runtime 
tests

 Runtime tests reflect exemplary 
and intended behavior of the 
system under test (SUT).

 Characteristic structure of 
scenario-based tests provides an 
option space for configuring views: 

 resulting in partial models →
human-tailored for a specific task.

Kaleido
Scope

  System  
under Test

UML Sequence 
    Diagrams

Scenario-Test 
Specification

UML Interaction 
       Models

Stakeholder

selects  
test-based views

Fig. 1. Deriving tailored models from scenario-based 
runtime tests.
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Structure of the Talk

 Motivation
 Conceptual Overview
 Example

 System under test (SUT)
 Scenario-test specification
 Test-execution trace model
 Mappings between test and UML
 Tailored sequence diagrams

 Option space for tailoring models (scenario-test viewpoint)
 Prototype implementation KaleidoScope
 Future Work
 Summary
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Motivation 1/2

 Behavior documentation, esp. by using graphical models, 
facilitates communication about and understanding of software 
systems.

 Manual creation (and maintainance) is an error-prone and 
time-consuming task (Rost et al., 2013).

 Multiple approaches exist for reverse-engineering behavioral 
models automatically from system execution (e.g., UML 
sequence diagrams: Briand et al., 2003).

 → Problem of model-size explosion (e.g., Sharp and 
Rountev, 2005; Bennett et al., 2008)

 Common counter measures are, e.g., techniques of sampling 
and hiding of model elements (e.g., Hamou-Lhadj and 
Lethbridge, 2004; Bennett et al., 2008).
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Motivation 2/2

In this approach: 
 We leverage the characteristics of scenario-based runtime tests 

for deriving tailored interaction models (scenario-test 
viewpoint)

 → we provide configuration options for the system's 
stakeholders to fit the models to maintenance tasks (tailoring)

 → test-to-system traceability (behavioral slices)
 scenarios (e.g., Jacobson, 1992): structured stories describing 

sequences of actions and events
 scenario-based testing (e.g., Ryser and Glinz, 1999): 

automated execution and verification of scenarios that describe 
interactions with or within a software system
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Conceptual Overview
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Fig. 2. Process of deriving tailored UML interaction models from 
scenario-based runtime tests.

Model-driven approach

transformation based on 
mappings between the 
metamodels of scenario-
based testing and UML2

Semi-automated 
derivation 

manual selection of 
views conforming to a 
scenario-test viewpoint

Our prototype implementation KaleidoScope can derive 
tailored interaction models from scenario-based runtime tests.
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Example 1/5
A) System under Test (SUT)

Fig. 3. Exemplary object-oriented system under test (SUT).

Stack
-limit: Integer [1]
-element: Double [*]

+push(e:Double): Boolean
+pop(): Double
+size(): Integer
+full(): Boolean
-getElements(): Double[]
+getLimit(): Integer
+setLimit(l:Integer)
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Example 2/5
B) Scenario-Test Specification

Scenario-Test  
Specification

Fig. 4a. Excerpt from test specification.

Fig. 4b. Natural-language description.

Exemplary test scenario pushOnFullStack
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Example 3/5
C) Test-Execution Trace Model

Fig. 5a. Excerpts from the corresponding test-execution trace model (XMI).
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Example 4/5
D) Mappings between Test and UML

 transML diagram 
(Guerra et al., 2012) 
technology- & 
language-independent 
and UML compatible

 in total, 18 mappings 
(12 for traces, 6 
viewpoint mappings)

 mappings refined by 
OCL constraints
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Fig. 6. Excerpt from transML mappings with excerpt from 
OCL consistency-constraints based on mapping M4.
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Example 5/5
E) Resulting Tailored UML Sequence 
Diagrams
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Fig. 7. Exemplary stakeholders/tasks 
and derived diagrams.
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Scenario-Test Viewpoint
- Structure of Scenario-based Tests 

 Characteristics of scenario-based testing:
 Scenario-test parts (test suite, test case, test 

scenario, as well as assertion and exercise blocks)
 Feature-call scopes (calls running from STF to SUT, 

calls internal to the SUT, and calls internal to the STF)
 A view stipulates elements to be selected or not

 → resulting in partial interaction models human-tailorable 
for a specific task.

 All views conform to a viewpoint (see, e.g., Clements et 
al., 2011).
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Option Space for configuring views
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Fig. 8. Option space for configuring different views conforming to a scenario-test viewpoint.

For the resulting derived 
diagrams corresponding to 
the configurations 1 and 2, 
see slide 11.
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KaleidoScope 1/3
- Derivation Process
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Fig. 9. Process of deriving tailorable UML-based software-behavior 
documentation with KaleidoScope.

Available for download from our website http://nm.wu.ac.at/nm/haendler

http://nm.wu.ac.at/nm/haendler
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KaleidoScope 2/3
- Used Technologies A

 Test Framework: Scenario-based Testing of Object-
Oriented Runtime-Models (STORM) (Strembeck, 2011)

 Instrumentation: NX/Tcl (object-oriented extension of 
Tcl) provides introspection techniques (see Neumann and 
Sobernig, 2015):

 → message interceptors (Mixin and Filter)

 → extraction of trace data by using 

callstack introspection (e.g., nx::current) and 
structural introspection (e.g., info method) 
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KaleidoScope 3/3
- Used Technologies B

 Trace and view models are transformed to UML interaction 
models by using Query View Transformation operational 
(QVTo) mappings (in total 24 mapping actions).

 → All models are stored and processed in their Ecore/XMI 
representation, which makes it possible to import the 
models via XMI-compliant diagram editors (e.g., Eclipse 
Papyrus). 
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Future Work

 Derivation of other model types 
 structure models (e.g., UML class models)
 component-based architecture documentation (e.g., 

inter-component interactions)
 Extension of prototype 

 integration of other filtering/abstraction techniques 
(e.g., constructor hiding, identification of loops)

 instrumenting other testing frameworks (e.g., JBehave 
using AspectJ)

 Application in large-scale projects 
 usability for stakeholders/tasks
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Summary

 Model-driven and semi-automated derivation of behavior 
documentation (in terms of UML2 interaction models)

 Scenario-test viewpoint (different views on the test-
execution trace available for configuration)

 Prototype implementation KaleidoScope (proof of concept)
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Thank you for your attention!

Q&A
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